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Abstract. For the ferromagnets EuS and GdMg, in which fourth-order exchange interactions (i.e. bi-
quadratic, three-spin and four-spin interactions) have been identified, the deviation of the spontaneous
magnetization with respect to the T = 0 value is shown to follow a T 2 law instead of the famous T 3/2

law expected for a Heisenberg ferromagnet. Moreover, the observed T 2 law holds for temperatures as large
as 0.8TC and the extrapolated magnetization value for T → 0 does not conform to ferromagnetic satura-
tion. This is because the fourth-order exchange interactions generate a second order-parameter which is
assumed to govern the order of the transverse moment components. These moment components have a
finite expectation value for T → 0 at the expense of the Heisenberg order parameter. Like the spontaneous
magnetization, the critical field curves Bc(T ) of the metamagnet EuSe and the antiferromagnet EuTe also
start decreasing with a T 2 term for T → 0. It is argued that the T 2 law is a consequence of the fourth-order
exchange interactions. This is shown experimentally by a study of the critical field curves B

‖
c (T → 0) per-

tinent to the longitudinal (Heisenberg) order-parameter in the diamagnetically diluted antiferromagnets
EuxSr1−xTe. In this solid solution series a particular composition of xc = 0.85 exists at which the different
fourth-order interaction processes compensate each other in the high temperature average. As a conse-
quence, an EuxSr1−xTe sample with x = 0.85 meets the requirements of a Heisenberg antiferromagnet at
least if a quantity is considered for which the high-temperature average over all fourth-order interactions
is decisive. This seems to be the case for the critical field curve B

‖
c (T → 0) which gives the phase bound-

ary to the paramagnetic phase. In fact, a crossover from a T 2 to a T 3/2 law is observed for B
‖
c (T → 0)

on approaching xc. This, we believe, shows the frequently observed T 2 law is caused by the fourth-order
interactions.

PACS. 75.30.Et Exchange and superexchange interactions – 75.30.Kz Magnetic phase boundaries
(including magnetic transitions, metamagnetism, etc.) – 75.40.Cx Static properties (order parameter,
static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

In the year 1930, Bloch, using the spin-wave concept,
showed theoretically that the spontaneous magnetization
of a Heisenberg ferromagnet with bilinear exchange in-
teractions to nearest neighbours decreases like M(T ) =
M(0)[1 − a · T 3/2 + · · · ] in first approximation [1]. In
1961, Gossard, Jaccarino and Remeika attempted to verify
Bloch’s theoretical prediction for the newly discovered in-
sulating ferromagnet CrBr3 [2]. Gossard et al. evaluated
the spontaneous magnetization of CrBr3 on account of
the 53Cr hyperfine field using zero-field NMR frequency
measurements. These data revealed that the spontaneous
magnetization could not be described adequately by only
a T 3/2 term but that the next higher T 5/2 term and one
anisotropy field had to be included in the fit in order to
reproduce the experimental data correctly.

In view of frequently observed T 2 laws either for the
critical field curves of EuSe and EuTe [3] or the sponta-
neous magnetization of GdMg [4], all of which are ma-
terials in which fourth-order exchange interactions (i.e.
biquadratic, three-spin and four-spin interactions) have
been identified, we re-plotted the 53Cr NMR frequencies
of reference [2] over T 2 (see Fig. 1) and observed that
a single T 2 term is able to describe the experimental
NMR data quite well. Unfortunately, the measurements
of reference [2] were limited to the temperature range
1.2 ≤ T ≤ 4.2 K and therefore the T 2 law is only con-
firmed to hold for a T/TC ratio of 4.2 K/37 K = 0.11.

The same situation observed for CrBr3 is also found for
EuS. Figure 2 gives the zero-field 153Eu NMR resonance
frequencies taken from reference [5] but also plotted vs.
T 2 for the same temperature range of 1.2 ≤ T ≤ 4.2 K.
Again, the 153Eu hyperfine field of EuS obeys a T 2 law at
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Fig. 1. 53Cr zero-field NMR frequencies of the ferromagnet
CrBr3 taken from reference [2] but plotted vs. squared abso-
lute temperature. Assuming the hyperfine field sampled by the
NMR signal to be proportional to the spontaneous magnetiza-
tion, a single T 2 term (straight-line) is sufficient to describe the
temperature dependence of the spontaneous magnetization.

least until a T/TC ratio of 4.2 K/16.3 K = 0.26 with high
precision.

GdMg is another ferromagnet for which the sponta-
neous magnetization was reported to exhibit a T 2 law over
a temperature range as large as 0.8TC [4]. Since in EuS [6]
and GdMg [7] appreciable fourth-order interactions have
been identified it is to be assumed the T 2 law is a conse-
quence of these interactions. This we want to demonstrate
in the present work with investigations of the critical field

B
‖
c (T ) of the antiferromagnetic longitudinal (Heisenberg)

order-parameter in the diamagnetically diluted antiferro-
magnets EuxSr1−xTe.

In recent measurements of the transverse suscep-
tibility of GdMg it was shown that the class of
fourth-order exchange interactions generates a second
order-parameter which is oriented perpendicular to the
common bilinear (Heisenberg) order-parameter [7]. This
conclusion is consistent with earlier neutron scattering ex-
periments [4]. In GdMg the Curie temperature of the lon-

gitudinal (Heisenberg) order-parameter is T
‖
C = 110 K but

the Néel temperature of the transverse order-parameter is

T
‖
N = 91 K. Therefore, in measurements in which both

order-parameters are not distinguished by a magnetic field
or some other means as is the case in zero-field NMR mea-
surements, a mixture of both order-parameters will be
measured. As a consequence, the observed T 2 law must
be common to both order-parameters. This argument is
at least correct if both order-parameters have a similar
ordering type as is the case for EuS in which both order-
parameters are ferromagnetic [3,6,8]. In GdMg, on the
other hand, the transverse order-parameter is antiferro-
magnetic and, as a consequence, contributes not much to
the longitudinal magnetization measurements. It is there-
fore easily possible to align the ferromagnetic compo-
nent by a magnetic field and to measure its properties
separately with conventional field-parallel magnetization

Fig. 2. 153Eu zero-field NMR frequencies of the ferromagnet
EuS taken from reference [5] but plotted vs. squared absolute
temperature. Since bilinear and biquadratic exchange interac-
tions are assumed to generate two perpendicular ferromagnetic
order-parameters in EuS [8] the observed T 2 law (straight-line)
should be common to both order-parameters. The T 2 law holds
at least until a T

TC
ratio of 4.2 K

16.6 K = 0.26.

measurements. The T 2 law observed in this way for GdMg
can be assumed to be a property of the ferromagnetic bi-
linear (Heisenberg) order-parameter.

Although there exists a number of theoretical studies
dealing with biquadratic and three-spin interactions on a
mean field level [9–11] there is presently, to the best of
our knowledge, no theory available which would explain
the T 2 law. We therefore tried to prove experimentally
whether the T 2 law originates in the fourth-order interac-
tions. To this end a Heisenberg ferromagnet with definitely
no fourth-order exchange interactions is needed. Such a
material is not known.

In the following section we will briefly review the
two methods used for the identification of fourth-order
exchange interactions in the diamagnetically diluted
antiferromagnetic compounds EuxSr1−xTe. Both methods
infer this information from an analysis of the curvature
of the magnetic isotherms as function of a magnetic field
and provide average values over all individual fourth-order
interaction processes. It turned out that the observed fer-
romagnetic total fourth-order interaction sum pertinent
to all Europium monochalcogenides [3] is composed of
much stronger antiferromagnetic biquadratic interactions
and slightly dominating ferromagnetic three-spin interac-
tions [6]. To a good approximation it can be assumed that
biquadratic interactions vanish proportional to x in a di-
luted system but three-spin interactions vanish propor-
tional to x2 (the limitations of this assumption for small
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x values will be outlined in the Appendix of the following
article). Therefore, there exists one particular composition
of xc = 0.85 at which antiferromagnetic biquadratic and
ferromagnetic three-spin interactions cancel in the high
temperature limit though they still have finite strengths

microscopically [12]. The critical field curve B
‖
c (T ) perti-

nent to the Heisenberg order-parameter, being the phase
boundary to the paramagnetic phase, can be expected
to be defined by the paramagnetic average over bilinear
(second-order) and fourth-order interactions because the
magnetic moments are nearly ferromagnetically aligned

along B
‖
c (T → 0). Since the fourth-order interactions van-

ish for x → 0.85 only the Heisenberg interactions should
be active at xc = 0.85. In fact, we will show here that this

is correct for B
‖
c and that B

‖
c (T → 0) exhibits a crossover

from a T 2 law to a T 3/2 law on approaching xc = 0.85.
On the other hand, the transverse order-parameter is

defined exclusively by the fourth-order interactions and
should react in a direct way on the sign change of the
fourth-order interaction sum at xc = 0.85. In fact, for
x < 0.85, where the fourth-order interaction sum is nega-
tive, a second antiferromagnetic phase is observed in addi-
tion to the conventional antiferromagnetic phase present
for all EuxSr1−xTe samples [12]. The spin structure of
both ordering types is essentially of the MnO type but
the Néel temperatures of the transverse order parameter
are slightly lower than the Néel temperatures of the longi-
tudinal order parameter [12] (see Fig. 13). Moreover, the
critical field values B⊥c (T → 0) of the transverse order
parameter are only about 0.3T in contrast to the critical

field values B
‖
c (T → 0) of the longitudinal order parame-

ter which are in the range 6–7 tesla.
For the samples with x > 0.85, for which the fourth-

order interaction sum is ferromagnetic, indications are
given for a ferromagnetic order of the transverse order-
parameter. This shows that the ordering type of the trans-
verse order-parameter is defined by the sign of the fourth-
order interaction sum i.e. Θ3, pretty much as the order
of the longitudinal order-parameter is defined essentially
by the conventional Heisenberg interaction sum i.e. Θ1.
In other words, the transverse ordering processes have the
character of an order-disorder phase transition even if they
occur at a temperature where a Heisenberg order parame-
ter already exists. It appears therefore plausible that they
concern the disordered transverse moment components.
This was shown explicitly only for GdMg up to now [7].
A more detailed investigation of the nature of both order-
parameters will be the subject of two forthcoming arti-
cles [8,13].

2 Identifying fourth-order exchange
interactions

Information on the fourth-order interaction strength is
provided by the curvature of the magnetic isotherms as
function of the applied magnetic field. It has been ob-
served long ago [14] that for temperatures T � TN the

Fig. 3. Low-temperature magnetization curves of EuTe and
Eu0.75Sr0.25Te showing different curvatures owing to a ferro-
magnetic (EuTe) and an antiferromagnetic (Eu0.75Sr0.25Te)
fourth-order interaction sum. In the antiferromagnetic case the
critical field B⊥c of the transverse order-parameter appears ad-

ditionally at ∼ 0.35 tesla (see inset). The critical field B
‖
c of

the longitudinal order-parameter can clearly be seen only in
the differentiated magnetization curves (see Fig. 5).

magnetization curve of EuTe is not a linear function of the
applied magnetic field as might be anticipated for an an-
tiferromagnet with only bilinear interactions but instead
it increases faster than linearly with field until the critical

field B
‖
c where the system undergoes a second-order tran-

sition into the paramagnetic state (see Fig. 3). Computer
simulations revealed also a linear magnetization curve for
T = 0 if only bilinear interactions are considered, irrespec-
tive of the range of these interactions [15].

Using a simple molecular field treatment it can eas-
ily be shown [12] that for T � TN the curvature of the
magnetization curves can be described in terms of a “bi-
quadratic” molecular field constantBqex which includes all
fourth-order interaction processes according to:

Bi = −Blex m−B
q
ex m(2m2 − 1). (1)

Here Bi means the applied magnetic field converted to its
value inside the sample, Blex means the bilinear (Heisen-
berg) molecular field constant and m the reduced magne-
tization. Equation (1) shows that already the linear rela-
tion between field and magnetization is affected by the
fourth-order interactions but that the curvature of the
magnetization curves is due exclusively to the fourth-order
interactions. In the case of EuTe the non-linear part of
the magnetization curve favours a ferromagnetic moment
orientation (the magnetization increases faster than lin-
early with field, see Fig. 3) and therefore the resulting
fourth-order interaction sum is to be termed ferromag-
netic. As can also be seen from Figure 3 the sense of the
curvature of the magnetization curve has changed for the
Eu0.75Sr0.25Te sample. The fourth-order interactions now
oppose a parallel moment orientation viz. delay magnetic
saturation and are therefore called antiferromagnetic. This
change in sign was shown to result from dominating an-
tiferromagnetic biquadratic interactions in the diluted
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samples but by dominating ferromagnetic three-spin inter-
actions in the concentrated materials including EuTe [6].

Consistent with an antiferromagnetic fourth-order in-
teraction sum for x < 0.85 a second anomaly to be
ascribed to the critical field B⊥c of the transverse order-
parameter appears in the x = 0.75 magnetization curve
in Figure 3 at a field value of about 0.35 tesla (see inset).
This anomaly is shown more clearly in Figure 10.

The just outlined analysis of the curvature of the mag-
netic isotherms for T � TN agrees reasonably well with
results of a molecular field analysis of the curvature of the
high-temperature paramagnetic isotherms. In the param-
agnetic phase the curvature of the magnetic isotherms is
described by the cubic susceptibility χ3 according to

Bi =
1

χ1
m+

1

χ3
m3 + · · · (2)

As was outlined in references [3,6] not only the linear sus-
ceptibility χ1 but also the cubic susceptibility χ3 obeys a
Curie-Weiss law at sufficiently high temperatures. The as-
sociated Curie-Weiss temperature Θ3 gives the high tem-
perature average over all fourth-order interaction pro-
cesses. The similar structure of equations (1, 2) shows
furthermore that Θ3 is given only by the fourth-order in-
teractions but Θ1 – the Curie-Weiss temperature of the
linear susceptibility χ1 – is given by all interactions. This
has been shown more rigorously by a high-temperature
expansion in reference [6].

The appearance of a second Curie-Weiss term in equa-
tion (2) can be taken as indication for a second order-
disorder phase transition in addition to the conventional
one which is driven by a divergence of the linear suscepti-
bility χ1. This second ordering process, being driven by a
divergence of χ3, occurs at Θ3 (in molecular field approxi-
mation) and concerns the transverse moment components
as revealed from investigations of GdMg [4,7].

Both methods of analysis according to equations
(1, 2) deliver an average over all fourth-order interaction
processes. Θ3(x) gives the high temperature average but
also the molecular field constant evaluated from the low
temperature magnetization curve averages over all spin
orientations between antiparallel for zero field and paral-

lel at the critical field B
‖
c . Both parameters are related by

the cubic Curie constant C3 and agree reasonably well [3],
even quantitatively. The results for Bqex(x) obtained from
an analysis of magnetization curves at T = 50 mK are
given in Figure 4.

3 Measurements of the critical field Bk
c(T, x)

of the bilinear order-parameter

Once it is known there are two order-parameters it is im-
portant to distinguish them experimentally in order to
evaluate their properties individually. This will be a dif-
ficult task in neutron scattering experiments if both or-
der parameters give rise to the same type of diffraction
lines as is the case in EuxSr1−xS and EuxSr1−xTe. If both
order-parameters are antiferromagnetic (x < 0.85) they

Fig. 4. Biquadratic molecular field constant Bqex(x) obtained
by an analysis of the curvature of low-temperature magneti-
zation curves as are seen in Figure 3. Bqex > 0 means a fer-
romagnetic fourth-order interaction sum, Bqex > 0 an antifer-
romagnetic fourth-order interaction sum. Bqex(x) includes all
effects from biquadratic, three-spin and four-spin interactions.
The solid line is a guide to the eye.

can easily be identified on account of their different critical

fields (B⊥c and B
‖
c ) or their different ordering transitions

(T⊥N and T
‖
N). On the other hand, for x > 0.85 the ferro-

magnetic transverse order-parameter will only increase the
magnetization values without producing a field induced
phase transition similar to B⊥c . Therefore, the observed

anomaly at B
‖
c (T, x > 0.85) can safely be attributed to

the antiferromagnetic longitudinal order-parameter.
It has been observed long ago that the critical field

curve B
‖
c (T ) of EuTe starts decreasing for finite tempera-

tures with a T 2 term instead with a T 3/2 term [16]. These
early measurements were, however, only conducted to a
lowest temperature of 0.5 K which turned out to be not
sufficiently low to evaluate the T 2 coefficient correctly,
causing wrong conclusions as regards the origin of the T 2

law.
In contrast to the longitudinal (Heisenberg) sponta-

neous magnetization of ferromagnets such as GdMg and
EuS which exhibits a T 2 law until a temperature as large

as 0.8TC the asymptotical T 2 law of B
‖
c (T → 0) is ob-

served to hold only until 0.1TN [3]. This we attribute to

the fact that the behaviour of B
‖
c (T ) is defined by the

paramagnetic average over all fourth-order interactions
and this average is one order of magnitude smaller than
the individual fourth-order interaction processes which
seem to be decisive for the low-temperature behaviour

of both order-parameters (note that B
‖
c is not the order

parameter). Additionally, the fact that B
‖
c (T = 0, x) is

fairly well described by the combined action of bilinear
(Blex(x)) and biquadratic (Bqex(x)) molecular field con-
stants (see Fig. 9) and that Bqex(x) conforms well to the
high-temperature average of the fourth-order interaction
sum given by Θ3(x) makes us confident that the x and T

dependence of B
‖
c (T, x) should be given by the quanti-

ties Θ3(x) viz. Bqex(x). In particular, for x → xc = 0.85
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Fig. 5. Second derivatives of magnetization with respect to

field which most accurately define the critical field B
‖
c for the

longitudinal (Heisenberg) order-parameter. As B
‖
c the mean

height of the left hand flank has been chosen.

Heisenberg behaviour can be expected for B
‖
c (T → 0)

since Θ3(0.85) = 0.

Magnetization measurements have been performed by
means of an inductive method using excitation frequen-
cies of 30 Hz. A small concentric transformer was wound
with an astatic pair of secondary windings. The needle-
shaped, single crystalline samples with typical weights of
20 mg were obtained by cleaving from a larger ingot and
placed as a core in one of the two antisymmetric secondary
coils, thus producing an unbalance secondary signal which
was passed through a 1:100 low noise transformer be-
fore being fed into a lock-in amplifier. Low temperatures
have been attained with a 3He-4He dilution refrigerator
furnished with resistance thermometers which were cal-
ibrated against a NBS SRM 768 Temperature Reference
Standard and against the susceptibility signal of a Cerium-
Magnesium-Nitrate (CMN) probe used to interpolate be-
tween the SRM 768 superconducting transitions.

Magnetization curves such as shown in Figure 3 have
been obtained by a numerical integration of the ac-

susceptibility signal. In those curves the critical field B
‖
c

cannot be localized unambiguously, especially for the dia-
magnetically diluted samples. Only the second derivative
of magnetization with respect to field exhibits a distinc-
tive but smeared discontinuity and allows a sufficiently

accurate identification of the phase transition at B
‖
c . This

is demonstrated in Figure 5 which gives the second deriva-
tive of magnetization as a function of field. In the evalu-

ation of the temperature dependence of B
‖
c (T ) it is very

important to choose homologous points in each d2M/dB2
i

curve being measured at a different temperature. As B
‖
c

we have chosen the half height of the steep left hand flanks

in Figure 5. Since the relative variation of B
‖
c (T ) within

the investigated temperature range is only ≈ 0.015 very
homogeneous samples are required for these studies.

Figure 6 displays one B
‖
c (T ) curve vs. T 2 for one

EuxSr1−xTe sample with x = 0.95. As was observed for

Fig. 6. Critical field B
‖
c of the longitudinal (bilinear) order-

parameter for one EuxSr1−xTe sample with x = 0.95 vs.

squared temperature. Below 0.8 K B
‖
c shows a T 2 law like

that observed for the critical fields of EuSe and EuTe [3].

Fig. 7. log-log plot of the variation of B
‖
c (T ) with respect to

B
‖
c (T = 0) as function of temperature revealing a crossover be-

haviour from a T 2 dependence for x = 1 to a T 3/2 dependence
for x = 0.85.

EuTe in reference [3], B
‖
c (T ) decreases with a T 2 law in

the limit T → 0 also for the x = 0.95 sample. This be-
haviour changes on approaching the critical composition
of xc = 0.85.

In the case of the four investigated samples with x ≥
0.85 the classical crossover behaviour seems to hold, as
can be seen in Figure 7, a log-log plot is showing the vari-

ation of B
‖
c (T ) with respect to the B

‖
c (T = 0) value as a

function of temperature. Note that we make use here of

the convention B
‖
c (T ) = B

‖
c (0) − b · T 2. For pure EuTe

the T 2 law holds over a temperature range as large as
1.2 K. In the case of the x = 0.95 sample the T 2 law is
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Fig. 8. Critical field curve B
‖
c (T ) of the longitudinal (bilin-

ear) order-parameter for one sample with x = 0.8 for which
the fourth-order interaction sum is antiferromagnetic. For all

samples with x < 0.85 B
‖
c (T ) decreases again for T → 0. Solid

line is guide to the eye.

restricted to T < 0.85 K and for the x = 0.90 sample
to T < 0.44 K. This reduction of the absolute validity
range of the T 2 law is much greater than that for the Néel

temperature T
‖
N which changes only between 9.9 K for

EuTe and 8.8 K for Eu0.9Sr0.1Te. As a consequence, the
limited T 2 range cannot be correlated with the decreas-
ing bilinear interactions. Moreover, the x = 0.90 data in
Figure 7 show the typical crossover phenomenon to a high
temperature exponent of 3/2 in agreement with classical
spin wave theory [17]. This observation makes clear the
T 2 law must be attributed to the non-Heisenberg inter-
actions. The range of validity of the T 2 law decreases on
approaching xc = 0.85 where the paramagnetic average of
the fourth-order interactions tends to zero and is replaced
on the high temperature side by the T 3/2 law. As a con-

sequence, the B
‖
c (T ) data of the x = 0.85 sample obey a

T 3/2 law over the whole observed temperature range.

This shows the B
‖
c (T → 0) behaviour is dominated by

the fourth-order interactions which turn out to be crucial
for the spin dynamics. This is very surprising since the

absolute value of B
‖
c is clearly dominated by the conven-

tional bilinear interactions apart from smaller modifica-
tions due to fourth-order interactions. Note also that for
T → 0 the moments are not aligned perfectly parallel at

B
‖
c (T = 0) [3].

Figure 8 displays the B
‖
c (T ) data for one sample with

x = 0.8 for which the fourth-order interaction sum is anti-
ferromagnetic. For all samples with x < 0.85 it is observed

the B
‖
c (T → 0) curve decreases again for T → 0 such

that the coefficient b(x) of a fitted T 2 law would be nega-
tive. In Figure 8 this is indicated by a solid line serving as
guide to the eye. It should be noted that such a decreasing
behaviour is possible for the critical field but thermody-
namically prohibited for an order-parameter which must
increase steadily as T → 0.

Fig. 9. Critical field values B
‖
c (50 mK, x) taken as the T → 0

limit as function of composition x. The straight solid line
gives the calculated mean field behaviour using the biquadratic
molecular field values Bqex(x) from Figure [4]. At the criti-
cal composition of xc = 0.85, where the transverse order-
parameter changes from ferromagnetic (x > 0.85) to antifer-
romagnetic (x < 0.85), only a weak kink is noticeable in the

longitudinal critical field B
‖
c (T = 0, x).

The behaviour of B
‖
c (T = 0, x) is worth discussing.

Figure 9 shows the B
‖
c (x) data for the lowest tempera-

ture of 50 mK which can be taken as the limit T → 0.
In molecular field approximation the critical field B

‖
c is

given according to equation (1), by −Blex(x)−Bqex(x) as-

suming m ≈ 1 at B
‖
c (T = 0). At this point care is required

with respect to the signs of both molecular field constants.
For EuTe, for instance, Blex is antiparallel but Bqex is par-

allel to the external field near B
‖
c , where the system has

nearly approached magnetic saturation. At zero field both
molecular fields are antiparallel to the external field.

The effective biquadratic molecular field constant
Bqex(x) is composed of contributions from biquadratic in-
teractions, which are, like the bilinear interactions, pro-
portional to x, and of contributions from three-spin inter-
actions, which are proportional to x2 (see Fig. 4). Both
interaction types seem to have similar consequences such
that they can be comprised in one single molecular field
constant. In the here interesting composition range of
0.7 ≤ x ≤ 1.0 this quadratic x-dependence can be lin-
earized by Bqex = 3.33 x − 2.83 with Bqex given in tesla
(compare Fig. 4) which together with Blex = 8x results in

a critical field of B
‖
c (T = 0, x) = 4.67x+2.83. It is impor-

tant to note that the slope of the critical field as function
of composition is changed from 8 to 4.67 by the fourth-
order interactions. Figure 9 compares the experimental

B
‖
c (T = 0, x) data with the molecular field calculation

(straight line). It can be seen that the molecular field ap-
proximation gives a surprisingly good fit to the experi-
mental results. At the critical composition of xc = 0.85,
where the fourth-order interaction sum changes from fer-
romagnetic for x > 0.85 to antiferromagnetic for x < 0.85

the experimental B
‖
c (T = 0, x) data exhibit an only weak

kink. This event is a weak reaction caused by the changing
magnetic order of the transverse order-parameter showing
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Fig. 10. First derivative of field parallel magnetization (ac
susceptibility) as function of field showing the anomaly at the
critical field B⊥c of the transverse order-parameter as observed
for the samples with x < 0.85, for which the fourth-order in-
teraction sum is antiferromagnetic.

that longitudinal and transverse ordering processes inter-
fere very little. The same conclusion can also be drawn

from the very weak anomaly displayed at xc by T
‖
N (x).

B
‖
c and T

‖
N are two quantities of the Heisenberg order-

parameter being defined mainly by the bilinear interac-
tions but to some extend also by fourth-order interactions
(see Figs. 9 and 13). Nevertheless the spin dynamics of
the bilinear (longitudinal) order-parameter is clearly dom-
inated by the fourth-order interactions as is demonstrated
by the observed low temperature T 2 law.

For the EuxSr1−xTe samples we studied the transverse
order-parameter is like the longitudinal one of the antifer-
romagnetic MnO type for x < 0.85 (Θ3 < 0) but the
critical field values B⊥c are considerably smaller than the

B
‖
c values of the longitudinal order-parameter (compare

Figs. 9 and 11). This is surprising since the correspond-

ing ordering temperatures T⊥N and T
‖
N are very similar

(Fig. 13). On the other hand, the observedB⊥c (T = 0) val-
ues conform to the biquadratic molecular field constants
Bqex displayed in Figure 4.

Figure 10 shows the differentiated magnetization
anomaly (ac measurement) observed along B⊥c for one
sample with x = 0.75. This graph gives the derivative
of the magnetization anomaly as is shown in the inset of
Figure 3. Performing those longitudinal magnetization
measurements for different temperatures, the complete
critical field curves B⊥c (T ) can be obtained as are shown
in Figure 11. It must be considered as characteristic that
the susceptibility anomalies along B⊥c (T ) disappear on ap-
proaching T⊥N (i.e. for Bo → 0) and that no anomaly at
all is observed in longitudinal zero field susceptibility mea-
surements at T⊥N as one might expect for a transverse or-
dering process. Interestingly, also zero-field magnetic spe-
cific heat measurements give no indication of T⊥N [18].
Therefore, T⊥N must be evaluated by the extrapolation
B⊥c (T, Bo → 0) if longitudinal magnetization measure-
ments are performed.

Fig. 11. Critical field curves B⊥c (T ) of the transverse order-
parameter for EuxSr1−xTe samples with x < 0.85, obtained
from field-parallel magnetization measurements. For these
samples the fourth-order interaction sum, as given by Bqex(x)

in Figure 4, is negative (antiferromagnetic). The B
‖
c (T ) curves

of the longitudinal order-parameter occurring at higher tem-
peratures are not shown for reasons of clarity.

By analogy, the transverse order-parameter can be ex-
pected to be ferromagnetic for x > 0.85 where Θ3(x) > 0
holds. Also for x > 0.85 zero-field specific heat measure-
ments reveal no anomaly in addition to the well-known

Néel temperature T
‖
N . The only irregularity observed is

that the critical magnetic behaviour of the magnetic spe-
cific heat of EuTe does not conform to the Heisenberg

model prediction at T
‖
N [18]. This might be a conse-

quence of the fact that T
‖
N and T⊥C are nearly equal (see

Figs. 12, 13).

Whenever there is one ferromagnetic and one antiferro-
magnetic order-parameter the ferromagnetic one can pref-
erentially be aligned by the application of moderate mag-
netic fields and can be distinguished using longitudinal
(field parallel) magnetization measurements. This orien-
tational process will only be limited by the antiferromag-
netic domains.

Figure 12 compiles a number of ac susceptibility mea-
surements for EuTe for the transverse susceptibility χ⊥
(upper panel) and the longitudinal (field parallel) suscep-
tibility χ‖ (lower panel) for different values of the static

longitudinal magnetic field B
‖
o . From the unusually strong

field dependence of both susceptibilities for temperatures

just below the longitudinal Néel temperature T
‖
N it can

be concluded that the Curie temperature T⊥C of the trans-

verse order-parameter must be very close to T
‖
N . Whether

T⊥C and T
‖
N really are equal cannot be decided unambigu-

ously in view of the limited temperature resolution of these
measurements.
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Fig. 12. Transverse ac susceptibility χ⊥ (upper panel) and
longitudinal (field parallel) ac susceptibility χ‖ (lower panel)

for EuTe for different values of the static longitudinal field B
‖
o .

The strong field dependence just below T
‖
N shows that T⊥C and

T
‖
N must be very close to each other. Due to the magnetic do-

mains and the associated distribution of moment orientations
no ideal ferromagnetic behaviour in χ‖ and no ideal antiferro-
magnetic behaviour in χ⊥ results. Note that the strong field

dependence below T
‖
N is absent for the samples with x < 0.85.

The main difference between the two susceptibilities
is a much stronger field dependence of χ‖ compared to

χ⊥ for T < T
‖
N . This behaviour indicates a new type of

anisotropy associated with the perpendicular configura-
tion of two order-parameters caused by a gradual rotation
of the ferromagnetic component into the field direction.
Similar observations were made also on GdMg using neu-
tron scattering methods [4]. Note that a field dependent
ac susceptibility means a non-linear magnetization curve.
It should furthermore be noted that the field parallel sus-
ceptibility χ‖ is isotropic, i.e., does not depend on the
crystallographic direction [18]. The field induced differ-
ence between χ‖ and χ⊥ is therefore also independent of
the crystallographic orientation.

A stronger field dependence of χ‖ conforms to our
expectation that the ferromagnetic transverse magneti-
zation will gradually turn into the field direction with
increasing field and will thereby increase the χ‖ val-
ues accordingly. This process is limited to field values
below 0.075 tesla. For fields in excess of 0.075 tesla

Fig. 13. Zero-field phase diagram of EuxSr1−xTe showing

the critical temperatures of both order-parameters. T
‖
N is

the Néel temperature of the longitudinal (Heisenberg) order-
parameter. T⊥C is the Curie temperature of the transverse (non-
Heisenberg) order-parameter in the range of a ferromagnetic
fourth-order interaction sum (x > 0.85) while T⊥N is the Néel
temperature of the transverse order-parameter in the range
x < 0.85 where the fourth-order interaction sum is antiferro-
magnetic. The T⊥N values have been obtained by extrapolating
the B⊥c curves of Figure 11 to Bo → 0.

the magnetization is a much slower function of field (com-
pare with Fig. 3) and the χ‖(T ) curves do increase only
gradually with field. This change of behaviour is evidently
caused by the magnetic domains which can no longer ro-
tate for fields > 0.075 T [19]. It is particularly interest-
ing to observe that for this marginal field value χ‖(T )

increases immediately below T
‖
N for decreasing tempera-

tures, a behaviour clearly showing the ferromagnetic char-
acter of the non-Heisenberg order parameter.

In contrast to χ‖ the χ⊥ increases much slower with
field; even at the limiting field Bo = 0.21 tesla, above
which χ⊥ is only weakly field dependent, all χ⊥(T )
curves decrease clearly with decreasing temperature be-

low T
‖
N . The χ⊥(T ) curves conform therefore much bet-

ter to the anticipated behaviour of an antiferromagnetic
order-parameter. Of course, χ‖ does not show ideal fer-
romagnetic behaviour and χ⊥ also fails to show ideal an-
tiferromagnetic behaviour. We attribute this also to the
magnetic domains [19] which prevent an ideal orienta-
tion of both order-parameters and mix their properties.
It is very important to note that the strong field depen-
dence of the susceptibilities shown in Figure 12 is absent
for the samples with x < 0.85 for which the transverse
order-parameter is antiferromagnetic (Θ3 < 0). One fur-
ther detail which is worth mentioning is the fact that in
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the zero field measurements χ(TN )/χ(0) = 3/2 is found as
expected for a perfect antiferromagnet. The transverse fer-
romagnetic order-parameter does therefore not affect the
longitudinal zero field susceptibility measurements. This
must also be attributed to the existence of an isotropic
distribution of antiferromagnetic domains. To orient the
spontaneous magnetization some “demagnetization” field
must be applied.

We should admit that the postulated ferromagnetic
order of the transverse order-parameter cannot be of the
conventional type since in neutron diffraction measure-
ments on EuTe powder samples no definite ferromag-
netic Bragg intensities can be observed (compare Fig. 12
of Ref. [15]); however, the MnO superstructure reflec-
tion intensities which are a signature of both antiferro-
magnetic order-parameters for x < 0.85 suddenly de-
crease at xc where the transverse order-parameter changes
from antiferromagnetic for x < 0.85 to ferromagnetic for
x > 0.85 [13]. This is at least an indirect indication for
the phase change of the transverse moment components.

In Figure 13 we show the composition dependence
of the transition temperatures of both order-parameters.

Note that T
‖
N(x) shows only a very weak change in slope

at xc = 0.85. It is particularly interesting that the or-
dering temperatures of the transverse (non-Heisenberg)
order-parameter appear to be attracted by the Néel line

T
‖
N(x) of the longitudinal (Heisenberg) order-parameter

except for xc = 0.85. The fact that the transverse order-
parameter changes from ferromagnetic for x > 0.85 to an-
tiferromagnetic for x < 0.85 in accordance with the sign
change of Θ3(x), a quantity which gives the interaction
strength in the disordered state, shows clearly that these
ordering phenomena are of the order-disorder type and
are caused exclusively by the fourth-order interactions.
The very small interference of both ordering processes sup-
ports the postulated orthogonality of the associated order
parameters.

4 Conclusions

In the diamagnetically diluted antiferromagnetic composi-
tion series EuxSr1−xTe fourth-order (non-Heisenberg) ex-
change interactions are now quantitatively known [3,6,12].
This information comes from molecular field analyses of
the curvature of the magnetic isotherms as function of
the applied magnetic field either in the limit T � TN
or T � TN . For T � TN a biquadratic molecular field
constant can be inferred from the curvature of the mag-
netization curves. Bqex gives the sum of all fourth-order
exchange interactions in terms of a molecular field. For
T � TN the cubic susceptibility χ3 describes the curva-
ture of the paramagnetic isotherms and from the observed
Curie-Weiss law of χ3 a Curie-Weiss temperature Θ3 is
obtained which represents again an averaged measure for
the strength of the fourth-order exchange interactions.
Both quantities are related by the cubic Curie constant
C3 and agree surprisingly well [3]. This is a non-trivial
result. Evidently Θ3 gives the high-temperature average

of all fourth-order interactions. Also in the evaluation of
Bqex from low-temperature magnetization curves in which
the spin configuration changes from antiferromagnetic for

Bo = 0 to nearly ferromagnetic for Bo = B
‖
c an averaging

process over all fourth-order interactions is performed.

Biquadratic and three-spin interactions can be dis-
tinguished by investigating the composition dependence
either of Bqex(x) or Θ3(x). Both quantities contain a neg-
ative term proportional to x due to antiferromagnetic
biquadratic interactions and a positive term proportional
to x2 due to ferromagnetic three-spin interactions (see Ap-
pendix of following article) [6]. Both individual interaction
processes are one order of magnitude larger than the aver-
age value over all these interactions observed in the com-
pact material EuTe.

In reference [7] it was argued that the class of fourth-
order interactions governs the magnetic ordering processes
of the transverse moment components which order inde-
pendently of the longitudinal moment components. The
ordering types of both order-parameters are given essen-
tially by the signs of the Curie-Weiss temperatures Θ1 and
Θ3 of the linear susceptibility χ1 and the cubic susceptibil-
ity χ3, respectively. For instance, in the composition series
EuxSr1−xTe Θ1 is negative for all compositions x but Θ3

is negative only for x < 0.85 and therefore both order-
parameters are antiferromagnetic for x < 0.85. The trans-
verse (non-Heisenberg) order-parameter is distinguished
by considerably smaller critical field values B⊥c but only
slightly smaller Néel temperatures T⊥N .

As a consequence, it is very important to discriminate
between both order-parameters by choosing suitable ge-
ometrical conditions in the magnetization measurements.
In zero-field NMR measurements a mixture of both order-
parameters is observed since these measurements are per-
formed for a state with an isotropic distribution of mag-
netic domains. For EuS, for which both order-parameters
are ferromagnetic (Θ1 > 0, Θ3 > 0) [3,8], the NMR
measurements revealed a T 2 law for the variance of the
spontaneous magnetization with respect to the T = 0
value. The T 2 law must, as a consequence, be common
to both order-parameters. This is confirmed with mag-
netization measurements on GdMg, a material with a
ferromagnetic bilinear order-parameter and an antiferro-
magnetic transverse order-parameter. In such a system the
antiferromagnetic transverse order-parameter does not
contribute much to the longitudinal (field-parallel) mag-
netization measurements and therefore the bilinear (lon-
gitudinal) order-parameter can be measured individually.
These measurements confirm the T 2 law for the Heisen-
berg order-parameter up to temperatures as large as 0.8TC
[4,7]. The spin dynamics of both order parameters is there-
fore dominated by the fourth-order interactions.

Since there is at present no theory available which
would explain the T 2 law this work aimed to verify ex-
perimentally that the T 2 law originates in the fourth-
order interactions. The only way of doing is the inves-
tigation of the low-temperature behaviour of the critical
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field B
‖
c (T → 0, x) in the diamagnetically diluted an-

tiferromagnetic compounds EuxSr1−xTe. The behaviour

of the critical field B
‖
c , being the phase boundary to the

paramagnetic phase, can be assumed to be defined by the
paramagnetic average of all interactions since for T → 0

the spins are nearly ferromagnetically saturated at B
‖
c .

At xc = 0.85 the paramagnetic average over the fourth-
order interactions passes zero because antiferromagnetic
biquadratic interactions and ferromagnetic three-spin in-
teractions compensate at xc. Under this condition only the
bilinear Heisenberg interactions remain active. Consistent
with this, a crossover from a T 2 law to a T 3/2 could be

observed for B
‖
c (T → 0, x) on approaching xc = 0.85.

The Bloch T 3/2 law is hence an exception and the T 2 law
the rule.

The combination antiferromagnetic-antiferromagnetic
of order-parameters (x < 0.85) is particularly clear since
both order-parameters can clearly be distinguished on ac-
count of their different critical fields, but for x > 0.85,
where the longitudinal order-parameter is still antiferro-
magnetic but the transverse order-parameter is ferromag-
netic, no direct indication of long range ferromagnetic or-
der is given by the available powder neutron diffraction
spectra [12]. Some ideas to unravel this puzzle are out-
lined in reference [13] (following article).

We gratefully acknowledge fruitful discussions with E. Müller-
Hartmann, University of Cologne. The technical assistance of
Mrs. Ch. Horriar-Esser and Mr. B. Olefs are also very much
appreciated.
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